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J .  Phys. A: Math. Gen. 13 (1980) 989-994. Printed in Great Britain 

Comments on ‘Bose-Einstein condensation in an Einstein 
universe’ 

C A Aragfo de Carvalho and S Goulart Rosa Jr 
Department of Physics, Princeton University, Joseph Henry Laboratories, Princeton, NJ 
08544. USA 

Received 31 May 1979 

Abstract. Using a Mellin integral transform we obtain the exact bulk and finite size terms of 
the logarithm of the grand partition function of a spinless relativistic boson gas confined in 
an Einstein universe. The finite size contribution calculated by Al’taie is shown to be 
negligible when compared with the leading relativistic correction to bulk term unless 
N ( k T / m )  < 1. We also verified that the transition temperature is lowered by the relativistic 
corrections overwhelming the shift produced by the surface effects. 

In the ultra-relativistic limit the finite size contribution is shown to be comparable only to 
higher-order mass corrections to the bulk term. 

1. Introduction 

The behaviour of an ideal boson gas confined to the background geometry of an 
Einstein universe has been recently investigated by Al’taie (1978). The system is 
treated from the very beginning in the non-relativistic approximation and the finite size 
corrections to the bulk specific heat and number of condensed particles are obtained 
using the formalism developed by Pathria (1972). 

Apart from the expected effect of smoothing out the singularities of the ther- 
modynamic functions at the transition temperature he also verified a displacement of 
the specific heat maximum towards higher temperatures and an enhancement of the 
number of condensed particles due to the finite size of the system. In this paper we 
present a more complete analysis which includes relativistic effects for the spinless gas. 
The calculations for the case of particles with spin can be carried out by the same 
procedure. The non-relativistic and ultra-relativistic limits are obtained from the exact 
expression for the logarithm of the grand partition fur ction which contains both the 
bulk and finite size contributions. The finite size term is shown to be very small when 
compared with the relativistic corrections to the leading bulk terms and should play a 
very modest role, except in very special cases, in the thermodynamic behaviour of the 
system. 

2. The spinless gas 

Using the Mellin Transform we write the logarithm of the grand partition function E of 
an ideal boson gas as an integral transform of the single particle partition function Z l ( p )  
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as follows (Goulart Rosa and Grandy 1973) 

where p = kT (k is the Boltzmann constant, T is the absolute temperature), 8 is the 
chemical potential, E, is the energy of the rlth single-particle state and cy is an arbitrary 
positive number less than one. The spinless boson of mass ‘m’ confined to the 
background of an Einstein universe is described by the scalar field @ satisfying the 
equation 

& a w @ +  3 i - m  @ = O  y = 0, 1 ,2 ,  3 (2) (a1 2 ,  

which has eigenvalues given by 

(3) 

with degeneracy g, = n2, n = 1, 2 ,  3, . . . , and ‘a’ is the radius of (spherical) spatial part 
of the Einstein universe. The sum Zl(P) = E,, exp(-PE,) in equation (1) is evaluated 
using the Poisson summation formula which reads in this case as follows: 

1 
a 

E, =-[n2+(ma)2]1’2 

m 
Z I ( P ) - ~ ~ ( P ) + Z . ( P ) = [  t2expE-(P/a)(t2+m 2 a 2 1 1/2  l d t  

0 

CO 

+ 2  f [ t2  exp[-(P/a)(t2+ m2a2)1’2] cos(2rp) dt. (4) 
p - 1  0 

The first integral represents the bulk contribution and the Fourier cosine series is the 
finite size term of the single-particle partition €unction. 

The integrals are evaluated in terms of the modified Bessel functions K,(t) 
(Gradshteyn and Kyzhik 1965) 

Z ~ P )  = ( m a 1 3 ~ 2 ( p m ) / ~ m  ( 5 )  

where 

T = ma[(2.rrp12 + (~/a)’]’’~. 

We recall that the modified Bessel functions are regular functions throughout the t 
plane cut along the negative axis and are real and positive when v > -1 and t > 0. The 
asymptotic expansion for large argument and the ascending series from which one can 
obtain the behaviour in the limit of t + 0 are, respectively, 

4 v 2  - 1 (4~’- 1)(4v2 - 9) + . +. 
2!8t2 

K,(t) - (.rr/2i)’” exp(-t) 1 +- ( 8t 
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where t,b(t) is the logarithmic derivative of the gamma function T(z) and 

We mention that the familiar non-relativistic and ultra-relativistic partition functions 
are regained from equation (5) if we substitute K 2  by the first terms of equations (7) and 
(8), respectively. Corrections to these limits are obtained if we retain higher-order 
terms in the asymptotic and ascending series for K 2 .  

The integral resulting from the substitution of equations (5)-(6) into equation (1) 
can be evaluated by closing the straight line contour to the right with a semi-arc of a 
circle. Because of the analytic behaviour of the K,, the integrand of equation (1) is an 
analytic function on the right-half t plane except at t = n ;  n = 1,2 ,  3, . . . , where it has 
simple poles due to the factor cot(lrt). The application of Cauchy's theorem gives the 
following expression for In Z: 

From the requirement that the integral along this semi-circle vanishes when the radius 
goes to infinity one derives that 6 6 m. This is an exact equation and it allows a rigorous 
discussion of the thermodynamic behaviour of the system. Other quantities of interest, 
such as the average number of particles present in the system, are obtained from (10) by 
suitable partial differentiation, e.g. 

3. The non-relativistic limit 

The non-relativistic approximation (pm >> 1) of equation (10) is obtained in a straight- 
forward way by using the asymptotic expansion for the K,, to find 

where we have retained higher-order terms of equation (7) only in the bulk contribu- 
tion. Using Dirichlet's series expansion for the Bose-Einstein (BE) functions: 

m 

~, (c r )  = C n-" exp(-ncu) C l 2 0  
n = l  

both bulk and surface contributions to In E can be rewritten as follows: 
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The expression for the surface correction terms was further simplified because, as 
noted by Al’taie, it gives an important contribution only in the region around the 
transition temperature where 5 = m so that the summation over n can be changed into 
an integration, where [ = P ( m  -0, a = (16.rr34‘)’/’(a/A) and A = (27rP/m)’/’ is the de 
Broglie thermal wavelength. We have kept only the leading term in ‘a’ in the finite size 
contribution to In S. 

In order to estimate the finite size correction and compare it with the relativistic 
corrections to the bulk term, we recall some properties of the BE functions. 

The F,(a) are monotonically decreasing functions of a, and for U > 1 they are finite 
at the origin. In particular, FI has a closed form 

F l ( a )  = -In(l -e-*). (15) 

For larger values of a ( a  B 2) they rapidly merge into the exponential function, 
F,(a) - exp(-a). So in the neighbourhood of the origin a2F1(a )  raises from zero as 
a 2  In a and goes to zero as a’ exp(-a) when a + 00 with a finite maximum at a = ao, 
where a. is the solution of the equation 

2F1(ao) - aoFo(a0) = 0 (16) 

An upper bound for a0 is obtained making use of the fact that F,,(a) >F,(a) for a’< a 
and a E (0, CO). Therefore, 

2/ao = Fo(ao)/F*(ao) > 1. (18) 

An upper bound for the finite size contribution follows immediately since a;Fl(ao) < 
a$Fo(ao) < ao. Hence, from equation (18), 

The first relativistic correction can be rewritten as 

where No is the leading term in the expression for the number of particles: 

The finite size contribution will be comparable with the first relativistic correction if 
No(/3m)-’ - 1. This condition will be verified only in very rarified gases even consider- 
ing heavy particles and low temperatures. For m - g and T - 1 K, No has to be of 
order of Here we have approximated the ratio of the BE functions in equation 
(20) by unity. To examine the effect of the relativistic correction on the critical 
temperature we set the chemical potential equal to the ground-state energy in equation 
(21): 
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The non-relativistic critical temperature Fc is given by 

NO = ( S) 1 ’ 2 ( m a 2 k ~ c ) 3 / 2 ~ 3 / 2 ( ~ ) .  

Hence, to first order we get 

and since the term in the bracket is always greater than one the relativistic correction 
has the effect of decreasing the transition temperature, i.e. in the oppposite direction of 
the change caused by the finite size term, as verified by Al’taie. 

4. The ultra-relativistic limit 

An expression for In E in this limit (pm << 1) is obtained using equations ( 8 )  and (9) for 
the modified Bessel function in the general equation (10). The resulting expression can 
once again be written in terms of the BE functions: 

where A = [4(1) + 4 ( 3 ) ] / 2 ,  f = -p& We have defined G ( m a ) / ( m a ) 2  in the finite size 
contribution to be 

which is obtained approximating the argument of the Bessel’s functions in equation (6 )  
by T = 21rpma. For ma = 2.rra/ACompton> 1, equation (26 )  can be further simplified to 
give 

The absolute value of this ratio is at best of order of unity. Therefore, the finite size 
correction once again is negligible compared with the first relativistic correction to the 
bulk term. 

Since the BE functions are defined only for non-negative argument, we have to 
restrict the chemical potential to non-positive values which is compatible with the 
previous upper bound on 5; For massive particles equation (25)  describes, because of 
restrictions of 6, essentially the high-temperature regime of the gas, which is the only 
regime we can treat analytically. 
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5. Discussion 

We have shown that taking into account relativistic corrections to the bulk contribution 
of In E is more important than the effects coming from the finite size of the system. This 
feature manifests itself also in the ultra-relativistic limit. In both cases, the finite size 
corrections will compete only with higher-order corrections to the leading bulk term. 
We feel that because of its importance the ultra relativistic limit deserves a separate 
presentation which shall be given in the future. (Araglo de Carvalho and Gouiart Rosa) 
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